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Abstract
A recently-proposed framework for modeling analogies exploits tight relationships between analogies and
generalized means, and unifies different models of numerical analogies. In this contribution we further
exploit this framework and discuss pertaining questions such as invariance properties, the semantics and
the expressive power of such analogies. We also explore further topics related to equivalence classes and
invariance properties, generalized mean approximations, manifold representations, as well as algorithmic
aspects and machine learning applications such as machine classification.
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1. Introduction and motivation

Analogical reasoning (AR) is a remarkable capability of human thought that exploits parallels
between situations of different nature to infer plausible conclusions, by relying simultaneously
on similarities and dissimilarities. Machine learning (ML) and artificial intelligence (AI) have
tried to develop AR but the early works lacked theoretical and formalization support or are
limited to Booleans. This situation started to change two decades ago when researchers adopted
the view of the so-called analogical proportions as statements of the form “𝑎 relates to 𝑏 as 𝑐
relates to 𝑑”, usually denoted 𝑎 : 𝑏 :: 𝑐 : 𝑑. Such proportions are at the root of the analogical
inference mechanism, and several formalisms to study this mechanism have been proposed,
which follow different axiomatic and logical approaches [1, 2, 3]. The study of relationships
between two pairs of objects 𝐴 and 𝐵, and of objects 𝐶 and 𝐷, can focus on different aspects.
For instance, one may want to judge whether the relationship between 𝐶 and 𝐷 is the same
as that between 𝐴 and 𝐵, and assess the quality of such relationships, or one may discuss
the quality of attribute or relationship similarities [4], following the foundational work by
Gentner [5]. One may also see 𝐴 and 𝐶 as problems, 𝐵 as a solution to problem 𝐴, and ask
whether the transposition of the ratio of 𝐴 to 𝐵 on 𝐶 generates a 𝐷, and to what extent the
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generated 𝐷 is a solution to problem 𝐶 .
There are two basic tasks associated with AR. The first is analogy making that corresponds

to the task of detecting and deciding whether a quadruple (𝑎, 𝑏, 𝑐, 𝑑) corresponds to a valid
analogical proportion. The second is analogy solving that refers to the task of finding or
extrapolating, for a given triple 𝑎, 𝑏, 𝑐 the value 𝑥 such that 𝑎 : 𝑏 :: 𝑐 : 𝑥 is a valid analogy.
This task is typically addressed in the literature by retrieval and adaptation, i.e., defining an 𝑥
from a pool of retrieved candidate solutions to be suitably adapted. In fact, analogy solving
is somewhat related to case-based reasoning (CBR) [6, 7, 8] where, given a set 𝑃 of problems,
a set 𝑆 of solutions and a set 𝐶 of cases (𝑥, 𝑦) ∈ 𝑃 × 𝑆, the CBR task is to find a solution 𝑦𝑡
to a given target problem 𝑥𝑡. CBR basically consists in (1) selecting 𝑘 source cases in the case
base according to some criteria related to the target problem (retrieval step), and (2) reusing
the 𝑘 retrieved cases for proposing a target solution (adaptation step). For 𝑘 = 1, the desired
solution 𝑦𝑡 corresponds to the solution of the analogical equation 𝑥 : 𝑦 :: 𝑥𝑡 : 𝑦𝑡. For higher
values of 𝑘, different models of analogy on 𝑃 and 𝑆 could be taken into account. For instance,
when 𝑘 = 3, the retrieval task consists in finding a triple of cases (𝑥1, 𝑦1), (𝑥2, 𝑦2) and (𝑥3, 𝑦3),
such that 𝑥1 : 𝑥2 :: 𝑥3 : 𝑥𝑡 is valid and such that 𝑦1 : 𝑦2 :: 𝑦3 : 𝑦 is solvable in 𝑦. In this setting
the desired 𝑦𝑡 would then be one of such solutions [9].

The latter idea was extended to analogy based classification [10] where objects are viewed as
attribute tuples (instances) x = (𝑥1, . . . , 𝑥𝑛). Here, analogical inference relies on the idea that if
four instances a,b, c,d are in analogical proportion for most of the attributes describing them,
then it may still be the case for the other attributes. Similarly, if class labels are known for a,b, c
and unknown for d, then one may infer the label for d as a solution of an analogical proportion
equation. Theoretically, it is quite challenging to find and characterize situations where such an
analogical inference principle (AIP) can be soundly applied, but there have been several efforts in
this direction [11, 12, 13]. In fact, the latter culminated recently in a Galois theory of analogical
classifiers [14] illustrated over classical numerical analogies. In fact, the principle of analogical
inference has been integrated into various machine learning tasks, e.g. preference learning
and recommendation [15, 16, 17], and used to solve difficult reasoning tasks such as academic
aptitude tests, visual question answering and target sense verification [18, 19, 20, 21], as well as
support computational creativity [22], analogical transfer [23, 24], and explainable AI [25, 26].

Recently, analogies and AR became quite popular due to the successes of deep learning
together with distributional representations (embeddings). For instance, [27, 28] show that
vector representations of quadruples respecting certain linear transformations satisfy common
properties of analogies, whereas [29] unveils the potential analogies as a benchmark to evaluate
the quality of embedding models. This exploration has extended to complex structures such as
knowledge graphs (KG) over multimodal domains, to address tasks such as named entity recog-
nition, link prediction, relation discovery (abduction) and KG bootstrapping and completion
[30, 31, 32], by leveraging multimodal knowledge embeddings [33, 34, 35, 36]. Despite these
impressive results by such analogy-based approaches in rather complex tasks, many works have
questioned the retrieved analogical relations, their dependency and limitation with respect to
the underlying representation model, and even the evaluation procedure [37, 38]. Many works
have been advocating for foundational mathematical frameworks and experiments to gain a
better understanding of the analogical capabilities of embedding models as well as recent large
language models [39, 40, 41, 42].
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In this paper we revisit the recent unified framework of numerical analogies proposed in [43].
It is rooted in the intuitive and classical idea of “analogy”, where a quadruple (𝐴,𝐵,𝐶,𝐷) is
said to constitute a valid analogy, denoted by 𝐴 : 𝐵 :: 𝐶 : 𝐷, if the “mean of the extremes 𝐴 and
𝐷 is equal to the mean of the means 1 𝐵 and 𝐶”. Here, we consider a generalized notion of mean
that goes back to Hölder [44]. (see Section 2). Endowed with this notion, the authors of [43]
introduced the so-called analogies in power 𝑝 (see Section 2), and showed several noteworthy
and rather surprising results, namely, that

1. any sequence of four increasing positive real numbers is an analogy in a unique suitable
power,

2. any such analogy can be reduced to an equivalent arithmetic analogy, and
3. any analogical equation has a solution for increasing numbers.

In this position paper, we survey these and other results, and further explore the potential of
the unifying framework proposed in [43]. In particular, we will address mathematical challenges
revealed by this new analogy formalization, and discuss potential impacts in algorithmic ap-
proaches as well as downstream ML tasks. The paper is thus organized as follows. In Section 2
we briefly recall the framework proposed in [43] to formalize analogies. We then summarize
a few surprising results in Section 3. The discussion on the open problems and perspectives
is carried out in Section 4, and divided into mathematical challenges (Subsection 4.1) and ML
impacts (Subsection 4.2).

Notation and terminology. We will use lower case letters 𝑎, 𝑏, 𝑐 and 𝑑 when the terms of
the analogy are numbers. We will also use R, R*, R+ ∖ {0} and C to denote the sets of real
numbers, real numbers without 0, positive numbers and complex numbers, respectively.

2. Generalized means and analogy

Recall that the 𝑝-generalized mean of real positive numbers 𝑥1, . . . 𝑥𝑁 is

𝑚𝑝(𝑥1, . . . 𝑥𝑁 ) = lim
𝑟→𝑝

𝑟

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

𝑥𝑟𝑖

for all 𝑝 ∈ [−∞,+∞ ]. Note that this notion subsumes the classical notions of:

• arithmetic mean:

𝑚1(𝑥1, . . . 𝑥𝑁 ) =
1

𝑁

𝑁∑︁
𝑖=1

𝑥𝑖;

• harmonic mean:
𝑚−1(𝑥1, . . . 𝑥𝑁 ) =

1
1
𝑁

∑︀𝑁
𝑖=1

1
𝑥𝑖

;

1In this paper the term mean will be understood in two different ways. The means in an analogy will refer to the
terms 𝐵 and 𝐶 , while generalized means of two numbers will refer to the notion of an average. Hopefully, the
context will be clear and will not lead to any ambiguity.
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Figure 1: Visualization of generalized means of 𝑎 = 2 and 𝑑 = 5.

• root mean square:

𝑚2(𝑥1, . . . 𝑥𝑁 ) = 2

⎯⎸⎸⎷ 1

𝑁

𝑁∑︁
𝑖=1

𝑥2𝑖 ;

• geometric mean:

lim
𝑝→0

𝑚𝑝(𝑥1, . . . 𝑥𝑁 ) = 𝑁

⎯⎸⎸⎷ 𝑁∏︁
𝑖=1

𝑥𝑖;

• maximum:
lim

𝑝→+∞
𝑚𝑝(𝑥1, . . . 𝑥𝑁 ) = max(𝑥1, . . . 𝑥𝑁 );

• minimum:
lim

𝑝→−∞
𝑚𝑝(𝑥1, . . . 𝑥𝑁 ) = min(𝑥1, . . . 𝑥𝑁 ).

The generalized mean of two numbers 𝑎 and 𝑑 reduces to

𝑚𝑝(𝑎, 𝑑) = lim
𝑟→𝑝

𝑟

√︂
1

2
(𝑎𝑟 + 𝑑𝑟),

for all 𝑝 ∈ R, and even for 𝑝 equal to −∞ or +∞. Figure 1 illustrates the curve obtained for the
particular values 𝑎 = 2 and 𝑑 = 5. It is noteworthy that the generalized mean function of two
numbers does not behave like an odd function with respect to 𝑝. Although defined above for
positive reals, this can be generalized to the case when 𝑎, 𝑑 and 𝑝 are complex numbers, except
in some undefined cases. Figure 2 shows the curve obtained for the generalized means of two
complex numbers −20 + 𝑖20 and 50 + 𝑖70.

Based on this notion of generalized means, the authors of [43] proposed the following unified
notion of numerical analogy.
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Figure 2: Generalized means for the two complex numbers 𝑎 = −20+ 𝑖20 and 𝑑 = 50+ 𝑖70. The color
is supposed to reflect the transition from 𝑝 = −∞ in blue on 𝑎 up to 𝑝 = +∞ in red on 𝑑, through all
values in R. The points around 𝑝 = 0 are in green and they visibly occupy the main part of the curve.
The point for 𝑝 = 0. i.e., the geometric mean, is located near the vertical axis. The harmonic (𝑝 = −1)
and the arithmetic means (𝑝 = 1) are also indicated.

Definition 1. Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ R+ ∖ {0}, and 𝑝 ∈ R. The analogy in power 𝑝 is defined as follows:

𝑎 : 𝑏 ::𝑝 𝑐 : 𝑑
def.⇔ 𝑚𝑝(𝑎, 𝑑) = 𝑚𝑝(𝑏, 𝑐) ⇔ lim

𝑟→𝑝

𝑟

√︂
1

2
(𝑎𝑟 + 𝑑𝑟) = lim

𝑟→𝑝

𝑟

√︂
1

2
(𝑏𝑟 + 𝑐𝑟) . (1)

This definition generalizes the classical arithmetic, geometric, or harmonic analogies, as
illustrated in Table 1. Note that when 𝑝 ∈ R*, the limits in (1) are not necessary, neither is
taking the 𝑝-th root, the one-half factor can be eliminated and demonstrations can then directly
exploit the formula 𝑎𝑝 + 𝑑𝑝 or the equality 𝑎𝑝 + 𝑑𝑝 = 𝑏𝑝 + 𝑐𝑝. In the case 𝑝 = 0, the simplified
versions of the formulas for the geometric mean are used: 𝑎× 𝑑 or 𝑎× 𝑑 = 𝑏× 𝑐. Finally, in
the two infinite cases, formulas with min and max are used.

The above defined relation between four terms defines a mathematical analogy in the expected
sense of the term, i.e., firstly, :: is a dependence relation (reflexivity and symmetry). Indeed,
transitivity is also verified so that, :: is an equivalence relation in this case. Secondly, it is easy to
verify that the permutation of the means 𝑎 : 𝑐 :: 𝑏 : 𝑑 and the inverse of the ratios 𝑏 : 𝑎 :: 𝑑 : 𝑐
hold, which implies in total eight equivalent forms, that classical formalizations of mathematical
analogy allow writing for the same analogy, by playing on the position of the terms:

𝑎 : 𝑏 :: 𝑐 : 𝑑 𝑏 : 𝑎 :: 𝑑 : 𝑐 𝑐 : 𝑎 :: 𝑑 : 𝑏 𝑑 : 𝑏 :: 𝑐 : 𝑎

𝑎 : 𝑐 :: 𝑏 : 𝑑 𝑏 : 𝑑 :: 𝑎 : 𝑐 𝑐 : 𝑑 :: 𝑎 : 𝑏 𝑑 : 𝑐 :: 𝑏 : 𝑎
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Table 1
Some illustrative examples subsuming instances of classical models of numerical analogies.

Data Equality of means Analogy Name of analogy

5, 7, 10, 12 1
2 (5+ 12) = 1

2 (7 + 10) 5 : 7 ::1 10 : 12 Arithmetic

2, 4, 8, 16
√
2× 16 =

√
4× 8 2 : 4 ::0 8 : 16 Geometric

8/5, 2, 4, 8
1

1

2
(
1
8
5

+
1

8
)
=

1
1

2
(
1

2
+

1

4
)

8

5
: 2 ::−1 4 : 8 Harmonic

2, 2, 5, 67 min(2,67) = min(2, 5) 2 : 2 ::−∞ 5 : 67 By minimum value

3. Main results of Lepage & Couceiro [43]

The main contributions of article [43] can be summarized in three rather surprising results.
The first one states that analogies exist and are unique between any quadruple of positive real
numbers in increasing order (the numbering of the results does not reflect the importance but
the order afterwards).

Theorem 2. Given four increasing positive real numbers, all different, we can always see an
analogy between them and this analogy is unique.

Note that the most common form of analogy between numbers is the arithmetic analogy,
which is just the particular case 𝑝 = 1. In addition to Theorem 2, the second main result states
that any analogy between four positive reals can be thought of as an arithmetic analogy, as it
can always be transformed into an arithmetic analogy.

Theorem 3. Any analogy in 𝑝 between four positive real numbers can be reduced to an arithmetic
analogy.

As vector representations in machine learning make use of real numbers, the main results
are presented with respect to real numbers, but extensions are possible. In particular, the third
main result states that every analogical equation of the form 𝐴 : 𝐵 :: 𝐶 : 𝑥 is solvable over the
complex numbers.

Theorem 4. Conditioned on 𝑝, it is possible to solve any analogical equation with complex terms.

This mathematical formalism to model analogies reveals several challenges, both of mathe-
matical and of ML nature, that we will discuss in the next section.
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4. Perspectives opened by this formalization

We will discuss some challenges and perspectives opened by this formalization of numerical
analogies. We identify two main directions of future work that correspond to the following
sections.

4.1. Mathematical aspects

Equivalence classes. From the definition of ::𝑝, it is not difficult to verify that for, 𝑝 ̸=
0,+∞,−∞, the relation ::𝑝 is reflexive, symmetric and transitive, and thus constitutes an
equivalence relation. It follows from Theorem 2 that the corresponding equivalence classes
are in bijection. Furthermore, the authors of [43] also showed that ::𝑝 remains an equivalence
relation in the cases 𝑝 = +∞,−∞, and that the corresponding equivalence classes remain in
bijection. However, this situation seems to change for the case 𝑝 = 0.

It is thus natural to ask for a structural study of these equivalence classes. The answer to this
question would shed some light into potential axiomatizations of ::𝑝 and some of the challenges
below. For instance, we could determine and transfer invariance results between equivalence
classes (see below). Also, it would make clear the meaning of 𝑝 (see Subsection 4.2). Furthermore,
one may ask whether such a trichotomy with respect to 𝑝 still holds in the complex case.

Invariance properties. Let 𝑅 ⊆ S𝑛 be an 𝑛-ary relation over S ∈ {R,R*,R+ ∖ {0},C}, and
let 𝑓 : S → S. Function 𝑓 is said to be a homomorphism of 𝑅, and relation 𝑅 is said to be an
invariant2 under 𝑓 if for every a = (𝑎1, 𝑎2, . . . , 𝑎𝑛) ∈ 𝑅, we have

𝑓(a) = (𝑓(𝑎1), 𝑓(𝑎2), . . . , 𝑓(𝑎𝑛)) ∈ 𝑅.

For instance, it was observed in [45, 43] that any affine transformation (translation) leaves the
analogy invariant for 𝑝 = 1. Similarly, the multiplication by any positive scalar leaves analogies
invariant for any real 𝑝.

These facts ask for the connection between 𝑝 and invariance properties, e.g., what are the
classes of ::𝑝 invariant under a certain class of functions or, conversely, given a 𝑝, what is the
class of homomorphisms. These questions can be extended to higher order relations with an
immediate application in the study of analogical classifiers (see Subsection 4.2). Also, taking
the “functional” definition of analogy under which 𝑎 : 𝑏 :: 𝑐 : 𝑑 holds whenever there is a
transformation 𝑡 such that 𝑏 = 𝑡(𝑎) and 𝑑 = 𝑡(𝑐), one may want to characterize the functions
that leave such analogies invariant. Moreover, we propose to extend these questions to the
richer realm of complex numbers.

Behavior of analogies on manifolds. Word embeddings are sets of vector representations
of words based on the distributional hypothesis that the semantics of a word is characterized by
its context. This has been implemented in efficient methods like Word2Vec and its successors.
It has been claimed that, in such a space, analogies can be formalized by an arithmetic relation
and theoretical arguments have been given in support of this [28, 46]. The Google analogy test

2Note that these notions naturally extend to any underlying set S.
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set [47] or BATS [39] are collections of analogies grouped by types of relations. For instance,
the capital-common-country type contains analogies like: Paris : France :: Berlin : Germany
or Tehran : Iran :: Havana : Cuba. We wonder whether significant information can be drawn
from the observation of the various analogical powers that one can compute on each different
dimension of each different analogy of the same type. Because the set of words contained in
such a group of analogies can be seen as defining, by extension, a manifold in the representation
space, an open question is whether observations on the analogical powers would allow to
characterize this manifold.

Another way of addressing the above question is to have a view that separates the terms in
an analogy. To illustrate with an example, given a number of points (e.g., a certain number of
masculine titles like emperor, count, duke and king) and some corresponding points (feminine
titles: empress, countess, duchess), one may try to characterize not only each of the two manifolds
for these two sets of words, but also the correspondance betweenthese manifolds, or even the
manifold that separates the two sets of words, by reminiscence with classification and SVMs.
How would that allow to deduce, on the basis of analogical powers, the fact that the last missing
point in the list above should be queen?

4.2. Machine learning: semantics and practical aspects

Meaning of 𝑝. As suggested in the previous section about equivalence classes, a question
is whether a meaning can be assigned to 𝑝. It comes naturally to mind that it could possibly
reflect some strength of the analogy. This stems from the fact that the two powers −∞ and
+∞ do not have exactly the same properties as the other powers. In particular, an analogical
equation in −∞ or +∞ looks more relaxed than in other powers because, there may exist
an infinite number of solutions. For instance 2 : 2 ::−∞ 3 : 𝑥 admits any value for 𝑥 greater
than 3 as a solution. Although it seems that this is a particular behaviour for the infinities, it
also seems that, depending on the kind of data at hand, some analogical powers might have
a heavier signification than, say other analogical powers. For instance, it could be the case in
word embedding spaces, where arithmetic analogies are being felt as the most reasonable kind
of analogy based on theoretical considerations [46], the dimensions on which the analogical
power 𝑝 departs greatly from 1 might be considered as less representative of the essence of the
relationship expressed by the word analogy.

Algorithmic aspects In the current state of our implementation, the analogical power for a
quadruple of real numbers is determined with a certain precision by dichotomic search. We
implemented a Python package that wraps C functions.3 For a million quadruples of increasing
positive real numbers drawn at random, the determination of the analogical power with a
precision of 10−4 takes 2.3 seconds on an Apple M1 processor (3.2 GHz). Acceleration being
always wanted, practical as well as theoretical questions can be considered.

Firstly, in practice, one may inspect whether exploiting some properties of invariance, e.g.,
by multiplication or reduction to arithmetic analogy, allows the use of tabular techniques to
accelerate computation. Tables of pre-computed cases could be loaded into memory to allow

3http://lepage-lab.ips.waseda.ac.jp/projects/Kakenhi_Project_21K12038/ > Experimental results > Python packages

http://lepage-lab.ips.waseda.ac.jp/projects/Kakenhi_Project_21K12038/
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for fast access. In conjunction with such tabulation techniques, the use of quantization can also
be considered.

Secondly, more theoretically, one can ask whether the use of analytic forms of approximating
functions can be exploited. The analytic expression of the generalized mean function itself is
reasonably simple, but its derivative and in particular the derivative of differences, as needed
in analogy, have rather complex expressions that would entail heavy computations if one
would envisage gradient techniques. By contrast, the “popularity” of the sigmoid function as
an activation function in neural networks is to be found in its simple analytic properties, in
particular the simplicity of its derivative 𝜎′(𝑥) = 𝜎(𝑥) × (1 − 𝜎(𝑥)), and the existence of a
central symmetry 𝜎(−𝑥) = 1− 𝜎(𝑥), something that the generalized mean function does not
have. It is however undeniable that, despite the previous remark, the generalized mean function
looks very much alike the sigmoid function. In the hope of faster computation to determine
analogical powers, one can ask whether approximations of the generalized mean function by,
e.g., the sigmoid function, could lead to accelerations. This first entails the determination of
suitable parameters to fit the sigmoid function onto the generalized mean function. The next
task is to estimate the error under such an approximation and to quantify the trade-off between
such an error and the acceleration, if any is obtained.

Relationships between invariance properties and classification As discussed in the
Introduction, analogy solving and analogical transfer are tightly related to case-based reasoning
(CBR) [8]. In particular, we mentioned the case where retrieval consists in finding a triple
of cases such that analogy holds in the problem domain, and finding a solution consists in
solving the corresponding analogical equation in the solution domain. This idea was extended
to analogy based classification [10] where objects are viewed as attribute tuples (instances)
x = (𝑥1, . . . , 𝑥𝑛). Here, analogical inference relies on the idea that if four instances a,b, c,d
are in analogy for most of the attributes describing them, then it may still be the case for the
other attributes. Similarly, if class labels are known for a,b, c and unknown for d, then one
may infer the label for d as a solution of an analogical equation. Theoretically, it is quite
challenging to find and characterize situations where such an analogical inference principle
(AIP) can be soundly applied. In case of Boolean attributes, a first step for explaining the
analogical mechanism was to characterize the set of functions for which AIP is sound (i.e., no
error occurs) no matter which triplets of examples are used. In [12], it was shown that these
so-called “analogy-preserving” (AP) functions coincide exactly with the set of affine Boolean
functions. Moreover, when the function is close to being affine, it was also shown that the
prediction accuracy remains high [13]. These results were extended in [11] to nominal domains
when taking the minimal model of analogy, i.e., only patterns of the form 𝑥 : 𝑥 :: 𝑦 : 𝑦 and
𝑥 : 𝑦 :: 𝑥 : 𝑦.

The latter were unified into a Galois theory of analogical classifiers [14] by exploiting the
notion of “polymorphism”, in which formal models of analogy are put in a two-way correspon-
dence with classifiers compatible with the analogical inference principle. To some extent, this
reflects invariance properties of higher-order, in which homomorphisms may be 𝑛-ary, for
𝑛 ≥ 2. This asks for revisiting the Galois framework of [14] under Defintion 1, and obtaining
explicit descriptions of the Galois sets of analogical classifiers, possibly parametrized by 𝑝.
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5. Conclusion

In this position paper, we surveyed the recently proposed formalization of numerical analogy,
more precisely on positive real numbers, with its definition and the three main results associated
with it. This framework opens new avenues in two main directions. The first direction we
identified concerns the mathematical aspects for machine learning pertaining to invariance
properties and the behavior of analogies. The second one pertains to theoretical and practical
aspects, such as the semantics, explainability considerations, and impacts on downstream ML
tasks.
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