
Learning Analogies between Classes to Create
Counterfactual Explanations
Xiaomeng Ye1,*, David Leake2, Yu Wang2, Ziwei Zhao2 and David Crandall2

1Berry College, Mount Berry GA 30149, USA
2Luddy School of Informatics, Computing, and Engineering, Indiana University, Bloomington IN 47408, USA

Abstract
Machine learning (ML) classification algorithms predict based on learned patterns of class characteristics.
The patterns between different classes are less studied. Such patterns can be considered as analogies in
classification domain: If 𝑎 and 𝑐 are from a class 𝐶1, 𝑏 and 𝑑 are from a class 𝐶2 and the two classes 𝐶1

and 𝐶2 are consistently similar in some features and different in some other features, then the analogy
𝑎 : 𝑏 :: 𝑐 : 𝑑 holds, because the similarities (resp. differences) between 𝑎 and 𝑏 are equivalent to those
between 𝑐 and 𝑑. A class-to-class siamese network (C2C-SN) is a classifier neural network that trains on
sample pairs from two classes 𝐶1 and 𝐶2, learns an inter-class pattern—i.e., an analogy—between the
two classes and then can decides whether any two samples 𝑎 and 𝑏 holds in the analogy 𝑎 : 𝑏 :: 𝑐1 : 𝑐2
where 𝑐1 and 𝑐2 are representative samples from 𝐶1 and 𝐶2 respectively. If the analogy does exist, from
sufficient random sample pairs the C2C-SN can learn without human knowledge or intervention. This
paper proposes a general method to regularize any feature extraction ML model in a classification domain,
by combining the ML model with a C2C-SN, to regulate the ML model to extract features important
to inter-class analogies. It demonstrates an application of this method to learning and applying these
analogies for counterfactual explanation in an image domain.

Keywords
Analogy, Case Adaptation, Case-based Reasoning, Counterfactual, Representation Learning

1. Introduction

Analogical reasoning research has been extensively studied for symbolic representations (e.g.,
[1, 2]), but is less commonly applied to non-symbolic data such as images until recent [3, 4].
Machine learning techniques have achieved great success for classifying complex data such as
large language corpora, images, and audio data. However, models like neural networks generally
learn the pattern from input to output while ignoring analogies between the categories. This
paper presents research on learning analogies directly from non-symbolic data using machine
learning techniques. Specifically, it focuses on analogy in an image classification domain,
assuming that a similarity and difference pattern exists between a pair of classes 𝐶1 and 𝐶2.
For 𝑥1, 𝑥2 of class 𝐶1 and 𝑦1, 𝑦2 of class 𝐶2 and 𝑥1 is similar to and different from 𝑦1 the same

IARML@IJCAI’2024: Workshop on the Interactions between Analogical Reasoning and Machine Learning, at IJCAI’2024,
August, 2024, Jeju, South Korea
*Corresponding author.
$ xye@berry.edu (X. Ye); leake@iu.edu (D. Leake); yw173@iu.edu (Y. Wang); zz47@iu.edu (Z. Zhao);
djcran@iu.edu (D. Crandall)
� 0000-0002-2289-1022 (X. Ye); 0000-0002-8666-3416 (D. Leake)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

mailto:xye@berry.edu
mailto:leake@iu.edu
mailto:yw173@iu.edu
mailto:zz47@iu.edu
mailto:djcran@iu.edu
https://orcid.org/0000-0002-2289-1022
https://orcid.org/0000-0002-8666-3416
https://creativecommons.org/licenses/by/4.0


Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

way as 𝑥2 is for 𝑦2, we consider 𝑥1 : 𝑦1 :: 𝑥2 : 𝑦2 as an analogy. The paper describes a general
method that can be used to guide any machine learning (ML) model trainable with gradient
descent, to extract features with analogy in mind.

We illustrate the method by applying it to use the analogies for counterfactual explanation [5].
Counterfactual explanations explain classifications by showing the effects of feature changes on
the classification. By doing so, they both clarify the scope of the concepts and potentially provide
actionable information for changing the outcome. For example, a counterfactual explanation
for denying a loan might be that the applicant would have been approved if the applicant had
had 5000 euro more savings. Given a domain described by symbolic features, counterfactual
explanations can be generated by selectively changing feature values to generate examples
across a decision boundary. For explaining classifications of image data, predefined feature sets
are not available. Consequently, research on counterfactual explanations of image classifications
has used ML techniques to extract and modify features [6, 7].

This paper demonstrates the usefulness of the learned analogies in counterfactual explanation
in two image domain tasks. The method regularizes the feature extraction process by pairing
it with a class-to-class siamese network (C2C-SN) and tuning it to extract features that are
significant in inter-class analogies. A C2C-SN can rank features based on their importance in
inter-class analogies. We hypothesize that modifying such features, which are most important
for distinguishing classes, leads to good counterfactual explanations.

The paper begins with related work. It then discusses the process of training an upstream
model with a C2C-SN to learn inter-class analogies and to rank features by their importance
in these analogies. It presents three experiments testing the method. The first experiment
combines the C2C-SN with a Variational Autoencoder (VAE) [8] and applies the resulted model
to two data sets, MNIST [9] and FashionMNIST [10], showing that modifying single features
top-ranked by C2C-SN feature importance often directly leads to desired class change. A
second experiment combines C2C-SN with the PIECE algorithm [6], which can modify features
exceptional for a class into their expected values, on the MNIST data set. A C2C-SN network
can rank features and suggest which features to change while PIECE can carry out the change to
generate a counterfactual. The counterfactuals generated are different but comparable in quality
to previous results, supporting that C2C-SN can work with different upstream ML models and
can guide a counterfactual explanation method with a new perspective. A third experiment
combines C2C-SN with a VAE on the cars3d data set [11], revealing limitations of the approach
and a potential direction for future research.

2. Background

2.1. Analogy Between Classes and Class-to-Class (C2C) Methodology

Machine learning classification methods generally classify based on similarity between members
of a class. Less studied are the patterns of similarities and differences between classes. The
pattern from one class to another is essentially an analogy between the two classes. For example,
given two images of the digit 1, in roman and italic fonts (“1” and “1”), and two digit 7s (“7”
and “7”), there exists the analogy that “1” is to “7” as “1” is to “7”, matching the pattern of the
analogical proportion “A is to B as C is to D”. Moreover, such an analogy applies to many pairs



Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

of samples from the two classes: Here “1”s and “7”s share a vertical line, but “7”s always have a
horizontal line on the top while “1”s do not. In other words, if 1s (or 7s) are similar to other 1s
(or 7s) in a consistent way, then 1s and 7s are similar or different in a consistent way.

Inspired by siamese networks [12], which learn a similarity pattern between samples sharing
the same class label, Ye et al. [13] developed class-to-class siamese networks (C2C-SNs) which
learn the inter-class patterns where samples of one class are consistently different or similar
on certain features when compared to samples of another class. Following the original paper,
the inter-class pattern, or analogy, from a class 𝐶1 to a class 𝐶2 will be denoted as 𝐶1-𝐶2. This
paper modifies the original design slightly: Here a C2C-SN is a neural network that uses a
shared network to extract features from two samples, calculates a feature difference 𝑓Δ and
a class label difference 𝐶Δ, and outputs a value 𝑝 (between 0 and 1) indicating whether the
feature difference 𝑓Δ matches the analogy between the two classes indicated in 𝐶Δ.

This paper presents a general usage of C2C-SNs to highlight features relevant to inter-class
analogies learned from data. By pairing a C2C-SN with any feature extraction model and
training both together, the C2C-SN can (1) regularize the training of the feature extractor so the
features extracted are useful in identifying inter-class analogies and (2) rank features based on
their importance in a specific analogy.

2.2. Machine Learning Models that Learn Analogies

As discussed in the survey by Bounhas et al., [14], the analogy community has studied analogies
for the purposes of classification (e.g., [15, 16, 17]) and explanation [18]. Analogical models are
mainly either logical, algebraic, or complexity-based [19]. This paper takes a different path by
using a neural model to learn the inter-class analogies directly from image data. The resulting
model does not require the process of choosing a triplet 𝑎, 𝑏, 𝑐 to classify (or explain) a sample 𝑑
based on an analogy 𝑎 : 𝑏 :: 𝑐 : 𝑑. Instead, a C2C-SN simply decides whether a pair 𝑎 : 𝑏 match
a pattern 𝐶1-𝐶2.

Early analogy research explored concept analogies on small symbolic concepts [20], while
more recent analogy research has applied modern ML techniques to domains such as tabular
data [5], images [21] and natural language processing tasks [22, 23]. A comprehensive survey
can be found in [24]. This paper presents a neural network method that can help any feature
extraction model to find analogy-relevant features in classification domains, and demonstrates
how the identification of such features can be used in counterfactual explanation in images. Lim
[18] also identified the usage of analogy in factual and counterfactual explanations, but they
experimented on Boolean data sets; Our work is in spirit aligned with Hüllermeier [5], who
demonstrated analogy-based explanation in machine learning on a tabular data and suggested
that analogy-based explanations can complement similarity-based explanations.

2.3. Counterfactual Explanation for Images

Counterfactual explanation in image domains has received much attention [7]. Generating
counterfactual images often requires applying machine learning techniques to extract features,
which are then modified for counterfactual explanation. For example, a VAE can encode sample
inputs to embeddings that fall within a predetermined distribution (normally Gaussian). REVISE



Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

creates counterfactual by modifying latent features extracted by a VAE [25]. Theobald et al.
[26] shows that REVISE can generate unrealistic images and improves upon it with Clarity.

Kenny and Keane [6] propose the PlausIble Exceptionality-based Contrastive Explanations
(PIECE) algorithm, which “identifies probabilistically-low feature-values in the test image (i.e.,
exceptional features) and modifies them to be their expected values in the counterfactual class
(i.e., normal features)”. Feature importance methods measure how influential a feature is in
a model’s output. Two popular examples are LIME [27] and SHAP [28]. A recent survey on
feature importance methods [29] links feature importance to counterfactual explanations, as
they can both serve as local explanations for a model’s behavior.

Our approach uses the Fisher et al. [30] model reliance method (as explained in Molnar
[31]) to rank feature importance in inter-class analogies. This ranking guides a counterfactual
explanation method to adapt a sample from a source class 𝐶1 into a target class 𝐶2 by priori-
tizing the modification of features important in the pattern 𝐶1-𝐶2. It can be considered as an
experience-guided counterfactual explanation method.

3. Proposed Method

Our method for counterfactual generation begins by extracting features regularized by a C2C-
SN, then identifies the most important features for analogies, and generates counterfactuals by
varying those features. This approach is generally applicable to any feature extractor trainable
with backpropagation. This study illustrates the usage in combining C2C-SN with a VAE (where
the feature extractor is the encoder as shown in Figure 1) and the PIECE algorithm (where the
feature extractor is a convolutional neural network) . If properly trained and regularized by
the C2C-SN, the feature extractor would extract features that are both useful in its original
downstream task (e.g. classification, reconstruction) and meaningful for inter-class analogies.

3.1. Training Process

The training process coordinates training of the C2C-SN and of the upstream ML feature
extraction model, as shown in Algorithm 1. We highlight a few key points:

• Each batch of samples 𝑠1 and the corresponding labels 𝐶1 are used to calculate the original
loss of the ML model as 𝐿𝑓 (𝑓(𝑠1), 𝐶1).

• A second batch of samples and labels is also created as 𝑠2 and 𝐶2 by shuffling 𝑠1 and
𝐶1 in the same order. A feature difference can be calculated as 𝑓Δ = 𝑓(𝑠1)− 𝑓(𝑠2). A
class label difference 𝐶Δ = 𝐶1 −𝐶2 is constructed as the element-wise vector difference
between the one hot encodings of 𝐶1 and 𝐶2 [32]. (𝑓Δ, 𝐶Δ) serve as the positive training
data (𝑋𝑝𝑜𝑠, 𝑦𝑝𝑜𝑠) for the C2C-SN. Then 𝐶2 is again shuffled into 𝐶2̂ so that every value
is different and 𝐶2̂ is a batch of wrong labels for samples 𝑠2. (𝑓Δ, 𝐶Δ̂ = 𝐶1 − 𝐶2̂) will
serve as the negative training data (𝑋𝑛𝑒𝑔, 𝑦𝑛𝑒𝑔) for the C2C-SN.

• The positive and negative training data are combined into one set (𝑋 = 𝑋𝑝𝑜𝑠+𝑋𝑛𝑒𝑔, 𝑦 =
𝑦𝑝𝑜𝑠+ 𝑦𝑛𝑒𝑔) and shuffled. The C2C-SN is trained using contrastive loss 𝐿𝑐2𝑐(𝑋, 𝑦) to best
predict whether the input sample difference 𝑓Δ matches with the analogy of 𝐶Δ.



Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

Figure 1: Model Structure. Given a pair of samples 𝑠1 and 𝑠2 of class 𝐶1 and 𝐶2 respectively, the feature
extractor 𝑓 (a VAE’s encoder in this case) extracts features 𝑓(𝑠1) and 𝑓(𝑠2). The feature difference
𝑓Δ = 𝑓(𝑠1)− 𝑓(𝑠2) is concatenated with a label difference 𝐶Δ (that is either correct 𝐶1-𝐶2 or incorrect
𝐶1-𝐶𝑤𝑟𝑜𝑛𝑔 where 𝐶𝑤𝑟𝑜𝑛𝑔 ̸= 𝐶2). The expected output 𝑦 of the C2C-SN is 1 or 0 depending on whether
𝐶Δ is correct or not.

• Last, the training of the upstream model 𝑓 and the C2C-SN can be combined by optimizing
their parameters together to lower the total loss

𝐿 = 𝐿𝑓 (𝑓(𝑠1), 𝐶1) + 𝛼 * 𝐿𝑐2𝑐(𝑋, 𝑦) (1)

where the parameter 𝛼 controls the relative importance of the constrastive loss 𝐿𝑐2𝑐.

3.2. C2C-SN Feature Importance

Once the C2C-SN is trained along with the feature extractor 𝑓 , we apply a permutation feature
importance method [30] (as explained in Molnar [31]) to calculate the importance of each value
𝑓Δ𝑖 in the feature difference 𝑓Δ. The method randomly permutes each value 𝑓Δ𝑖 in 𝑓Δ and
measures how much the output of the C2C-SN is changed when using the new feature 𝑓 ′

Δ

instead of the original feature 𝑓Δ. If the value 𝑓Δ𝑖 is important, then changing it will drastically
change the final error of the C2C-SN. Because 𝑓Δ𝑖 is calculated from 𝑓Δ𝑖 = 𝑓(𝑠1)𝑖 − 𝑓(𝑠2)𝑖,
the importance of 𝑓Δ𝑖 is also the feature importance of 𝑓(𝑠1)𝑖 and 𝑓(𝑠2)𝑖 in the analogy 𝐶1-𝐶2.

In contrast to other feature importance methods which permute one feature of the input and
measure the variance in a model’s output [30], the C2C-SN input includes both 𝑓Δ and a class
label difference 𝐶Δ. Therefore C2C-SN feature importance can rank features locally based on
𝐶Δ: The local feature important in one analogy can be of little significance in another analogy.
The local feature importance is especially useful for counterfactual explanation by highlighting
the most semantically meaningful difference between two classes. Samples of a class 𝐶1 can be
adapted into another class 𝐶2 by changing the most important features in the analogy 𝐶1-𝐶2,
yielding a counterfactual. C2C-SN feature importance can also rank features as global feature
importance across all 𝐶Δ analogies.



Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

Algorithm 1 Training Process of C2C-SN

Require: a feature extractor 𝑓 and its loss functions 𝐿𝑓 and a 𝑐2𝑐-𝑠𝑛
The following is repeated until model convergence or maximum epoch reached.
for each batch of samples 𝑠1 and labels 𝐶1 ∈ training data do

𝑠2, 𝐶2 ⇐ 𝑠ℎ𝑢𝑓𝑓𝑙𝑒_𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟(𝑠1, 𝐶1) ◁ Prepare a second batch from 𝑠1 and 𝐶1

𝑓Δ ⇐ 𝑓(𝑠1)− 𝑓(𝑠2)
𝐶Δ ⇐ 𝐶1 − 𝐶2

𝐶2̂ ⇐ 𝑠ℎ𝑢𝑓𝑓𝑙𝑒(𝐶2) ◁ Prepare a batch of wrong labels 𝐶2̂

𝐶Δ̂ ⇐ 𝐶1 − 𝐶2̂

𝑋𝑝𝑜𝑠 ⇐ 𝑐𝑜𝑛𝑐𝑎𝑡((𝑓Δ, 𝐶Δ), 𝑑𝑖𝑚 = 1) ◁ Prepare the input and output for C2C-SN
𝑦𝑝𝑜𝑠 ⇐ 𝑜𝑛𝑒𝑠(𝑠𝑖𝑧𝑒 = 𝑋𝑝𝑜𝑠.𝑠𝑖𝑧𝑒)
𝑋𝑛𝑒𝑔 ⇐ 𝑐𝑜𝑛𝑐𝑎𝑡((𝑓Δ, 𝐶Δ̂), 𝑑𝑖𝑚 = 1)
𝑦𝑛𝑒𝑔 ⇐ 𝑧𝑒𝑟𝑜𝑠(𝑠𝑖𝑧𝑒 = 𝑋𝑛𝑒𝑔.𝑠𝑖𝑧𝑒)
𝑋 ⇐ 𝑐𝑜𝑛𝑐𝑎𝑡((𝑋𝑝𝑜𝑠, 𝑋𝑛𝑒𝑔), 𝑑𝑖𝑚 = 0)
𝑦 ⇐ 𝑐𝑜𝑛𝑐𝑎𝑡((𝑦𝑝𝑜𝑠, 𝑦𝑛𝑒𝑔), 𝑑𝑖𝑚 = 0)
𝑋, 𝑦 ⇐ 𝑠ℎ𝑢𝑓𝑓𝑙𝑒_𝑡𝑜𝑔𝑒𝑡ℎ𝑒𝑟(𝑋, 𝑦)
𝐿𝑐2𝑐(𝑋, 𝑦) ⇐ 𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡𝑖𝑣𝑒_𝑙𝑜𝑠𝑠(𝑐2𝑐-𝑠𝑛(𝑋), 𝑦)
𝐿 = 𝐿𝑓 (𝑓(𝑠1), 𝐶1) + 𝛼 * 𝐿𝑐2𝑐(𝑋, 𝑦)
Optimize 𝑓 and 𝑐2𝑐-𝑠𝑛 over 𝐿

4. Experimental Study

We performed experiments to explore:

• Whether C2C-SN can extract features important for analogy and rank their importance.
• The quality of counterfactuals generated by modifying features selected by C2C-SN.
• The limitations of combining C2C-SN with a feature extractor.

4.1. Extracting and Ranking Features

Data set: The first experiment combines a C2C-SN with a VAE and tests it the MNIST and
FashionMNIST data sets. MNIST is an image set of handwritten digits (from “0” to “9”) while
FashionMNIST is an image set of 10 different types of clothing articles. All images are 28x28
pixels. Each data set contains 60000 training samples and 10000 testing samples.

Testbed systems: The VAE depends on meta-parameters. Most importantly, we set the
channel number of convolutional layers 𝑐 = 64 and the number of latent dimensions
𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚 = 32. We chose these settings because they generally work well across mul-
tiple data sets. The VAE’s encoder stacks two convolutional layers: (𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 1,
𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 𝑐, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 4, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 1, 𝑅𝑒𝐿𝑈 ) and (𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 =
𝑐, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 𝑐 * 2, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 4, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 1, 𝑅𝑒𝐿𝑈 ). The features
extracted by convolutional layers are passed to a linear layer to produce the embedding 𝑚𝑢 and
another linear layer to produce 𝑠𝑡𝑑. The embedding 𝑚𝑢 is equivalent to the feature extracted
𝑓(𝑠) in Figure 1.



Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

The decoder (marked as 𝑓 ′ in Figure 1) is the reverse of the encoder: an embedding is passed
to a linear layer (𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚𝑠, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑐 * 2 * 7 * 7), the output of
which is passed to two convolutional layers: Conv2d (𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 𝑐 * 2, 𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 =
𝑐, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 4, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 1, 𝑅𝑒𝐿𝑈 ) and Conv2d (𝑖𝑛_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 𝑐,
𝑜𝑢𝑡_𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 = 1, 𝑘𝑒𝑟𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 = 4, 𝑠𝑡𝑟𝑖𝑑𝑒 = 2, 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 = 1, 𝑆𝑖𝑔𝑚𝑜𝑖𝑑). As in standard
VAEs, the encoder 𝑓 and decoder 𝑓 ′ together are trained to optimize a loss function 𝐿𝑓 that is
composite of a reconstruction loss (so the reconstructed image 𝑓 ′(𝑓(𝑠)) is similar to the original
input 𝑠) and a KL-divergence loss (so the distribution of 𝑚𝑢s conforms to a prior Gaussian
distribution whose 𝑚𝑢 = 0 and 𝑠𝑡𝑑 = 1).

The C2C-SN is a composite of two hidden layers with leaky ReLU activation func-
tions: (𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑙𝑎𝑡𝑒𝑛𝑡_𝑑𝑖𝑚𝑠 + 𝑙𝑎𝑏𝑒𝑙_𝑠𝑖𝑧𝑒, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑐2𝑐_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦) and
(𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑐2𝑐_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑐2𝑐_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦/2), and an output linear layer
(𝑖𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑐2𝑐_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦/2, 𝑜𝑢𝑡_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 1). The 𝑐2𝑐_𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 is set to 32. The en-
coder 𝑓 and the C2C-SN are trained together to minimize the constrastive loss 𝐿𝑐2𝑐. Therefore,
the encoder 𝑓 , the decoder 𝑓 ′ and the C2C-SN are all trained together to minimize the total loss
𝐿 = 𝐿𝑓 + 𝛼 * 𝐿𝑐2𝑐 by following the procedure described in Section 3.1.

4.1.1. Experimental Results on MNIST

Given a sample 𝑠 from MNIST, we use C2C-SN feature importance to rank features 𝑓(𝑠) both
locally on analogical patterns between two classes and globally across all patterns. Using an
image “1” as an example, Figure 2a shows the reconstructed images after modifying each of the
top 8 globally ranked features out of 32 features in total. In Figures 2a-4b, each row shows the
effect of modifying one feature for 9 equally spaced values. The values fall between −1 and
1, because the embeddings conform to a Gaussian distribution of 𝑚𝑢 = 0 and 𝑠𝑡𝑑 = 1. The
images in the center conform to the average of the class, while the ones on the two ends are
more irregular, potentially of a different class. Figure 2a shows that features that are globally
important may not necessarily lead to class change when modified. For example, modifying the
2nd - 4th most important features do not modify this “1” into digits of other classes.

C2C-SN feature importance does well at ranking features based on their local importance
in the pattern between two specific classes. As shown in Figures 3a and 3b, C2C-SN feature
importance correctly suggests the top features that can lead to the desired class change. More
specifically, Figure 3a ranks features based on the analogy between “1”s and “2”s. It shows
that the digit “1” can be modified into “2” by altering a single feature, however, too much
modification might distort the image unrealistically, because the modified feature is now at
the boundary of the distribution of latent embeddings. Figure 3b ranks features based on the
pattern between “1”s and “9”s. It shows another example in which the digit “1” can be modified
into a “9” by altering one single feature. Note that the digit “1” is modified into a “7” before it
changes to a “9”. This is because the embedding space of VAE is intrinsically smooth and other
classes may be allowed between embeddings of two classes.

Figure 3c ranks features based on the pattern between “1”s and “5”s. Here, the C2C-SN failed
to suggest any feature that can modify the “1” into a “5”. Although the C2C-SN encourages the
VAE encoder to extract features that are important in analogies, the training does not guarantee
that a single feature corresponds to a given class change. Changing multiple features might be



Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

(a) Gradual Changes of an Image “1” (b) Gradual Changes of a Pants Image

Figure 2: Gradual Changes of an Image when Modifying Top 8 Globally Ranked Features

(a) (b) (c)

Figure 3: Gradual Changes of the Image “1” when Modifying Top 5 Locally Ranked Features in the
Pattern from “1”s to (a) “2”s (b) “9”s (c) “5”s

required for the change between two vastly different classes (e.g. “1”s and “5”s).

4.1.2. Experimental Results on FashionMNIST

The same experiment was carried out on FashionMNIST. Using a Pants image as an example,
Figure 2b demonstrates the reconstructed images after modifying each of the top 8 globally
ranked features. The majority of the features do not lead to class change when modified.

Figure 4a ranks features based on the pattern between Pants and Long Sleeves. Figure 4b
ranks features based on the pattern between Pants and Shoes. Note that modifying one feature
may not be enough to cause a desired change, as the Shoes converted from the Pants have a
gap in the middle. This aligns with our earlier discussion of the results for MNIST.

These experiments illustrate that the C2C-SN can help a ML model to extract features for
analogy and C2C-SN feature importance can rank these features for counterfactual explanation.
However, it is not guaranteed that modifying a top feature will lead to desired class change,
especially when the differences between the two classes are complex.



Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

(a) (b)

Figure 4: Gradual Changes of a Pants Image when Modifying Top 5 Locally Ranked Features in the
Pattern from Pants to (a) Long Sleeves (b) Shoes

4.2. Quality of Counterfactuals Using C2C-SN Feature Importance in PIECE

The strategy of learning analogies with C2C-SN should be generally applicable when using any
feature extractor. This section presents an experiment combining C2C-SN feature importance
with the PIECE algorithm [6], which uses a convolutional neural network for feature extraction.

This experiment generates counterfactuals for misclassified samples from Kenny and Keane
[6] but replaces the feature selection component of PIECE with a new algorithm that selects
top features ranked by C2C-SN feature importance. The experiment applies different methods
to generate counterfactual explanations for MNIST and compares the generated images both
qualitatively and quantitatively. The original design of PIECE has four major steps [6]:

1. A convolutional neural network 𝑐𝑛𝑛 is trained to classify MNIST samples. We find 41
hard samples misclassified by 𝑐𝑛𝑛. We denote a hard sample image as 𝑠, the true class
label as 𝐶𝑡𝑟𝑢𝑒 and the misclassified label as 𝐶𝑝𝑟𝑒𝑑.

2. The CNN derives the feature vector 𝑥 of a sample 𝑠 as the activation of the penultimate
layer of 𝑐𝑛𝑛 when applied to 𝑠, denoted as 𝑥 = 𝑐𝑛𝑛(𝑠). A GAN-inversion technique is
used to generate an image using a GAN 𝐺. A GAN embedding 𝑧 for image 𝑠 is optimized
so that 𝑥 = 𝑐𝑛𝑛(𝐺(𝑧)).

3. The probability function of each feature value 𝑥𝑖 is modeled as a hurdle model. A feature
value 𝑥𝑖 is considered exceptional if the value is rare in the true class 𝐶𝑡𝑟𝑢𝑒 (probabilities
are less than 0.05). PIECE only considers modifying 𝑥𝑖 if doing so will increase the output
activation for 𝐶𝑡𝑟𝑢𝑒. Assume 𝑛 feature values are to be modified by PIECE.

4. All 𝑛 feature values are modified into their expected value in𝐶𝑡𝑟𝑢𝑒. The modified feature is
denoted as 𝑥′. Last, 𝑧 is optimized into 𝑧′ such that 𝑐𝑛𝑛(𝐺(𝑧′)) ≈ 𝑥′. The counterfactual
explanation is 𝐺(𝑧′).

Two sample counterfactuals are shown in Figures 5a and 6a. In both scenarios, the CNN
classifier misclassifies a digit “7” is as a class other than “7”, and the PIECE algorithm attempts to
generate a counterfactual explanation by making the exceptional features normal. The modified
image looks more like a standard “7”. This explanation can be understood as follows: The
model misclassified the query as non-“7” because it believes that the image needs to be like the
counterfactual example to be considered a “7”.

We first created a variation of the above algorithm (which we name as “C2C” for convenience),
in which we replaced Step 3 in PIECE with the following: A C2C-SN is trained on the features



Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

Query GAN Estimation PIECE

(a) A “7” Misclassified as “1”. PIECE
Modifies it into a “7”.

0 5 10 15 20 25

0

5

10

15

20

25

(b) PIECE
0 5 10 15 20 25

0

5

10

15

20

25

(c) C2C
0 5 10 15 20 25

0

5

10

15

20

25

(d) P-STEP
0 5 10 15 20 25

0

5

10

15

20

25

(e) C-STEP

Figure 5: Comparison of Four Different Counterfactuals Generated for the Digit “7” in Figure 5a

Query GAN Estimation PIECE

(a) A “7” Misclassified as “2”. PIECE
Modifies it into a “7”.

0 5 10 15 20 25

0

5

10

15

20

25

(b) PIECE
0 5 10 15 20 25

0

5

10

15

20

25

(c) C2C
0 5 10 15 20 25

0

5

10

15

20

25

(d) P-STEP
0 5 10 15 20 25

0

5

10

15

20

25

(e) C-STEP

Figure 6: Comparison of Four Different Counterfactuals Generated for the Digit “7” in Figure 6a

extracted and provides a C2C-SN feature importance ranking for the pattern 𝐶𝑡𝑟𝑢𝑒-𝐶𝑝𝑟𝑒𝑑. The
top 𝑛 features are then modified in their expected value in Step 4. The choice of 𝑛 depends on
how many features are deemed exceptional by PIECE. This variation selects features based on
the C2C-SN feature importance ranking but modifies features in the same manner as PIECE.

We also made a variation of PIECE (named “PIECE-step”) that, instead of modifying all ex-
ceptional features, modifies exceptional features one by one, starting from the most exceptional,
until the modified sample is classified as 𝐶𝑡𝑟𝑢𝑒 by the 𝑐𝑛𝑛. Last, we made a variation of C2C
(named “C2C-step”) which instead of modifying 𝑛 features, modifies top features suggested by
the C2C-SN feature importance one by one, until the modified sample is classified as 𝐶𝑡𝑟𝑢𝑒.

Thus we tested four variations: The original PIECE algorithm, PIECE-step that modifies
features one by one until crossing the class boundary, the C2C algorithm that replaces PIECE’s
Step 3 with C2C-SN feature importance ranking, and the C2C-step that modifies features one by
one until crossing the class boundary. The four were run on all 41 hard samples. Figures 5 and 6
show counterfactual examples generated by different algorithms for two sample digit “7”s. We
observe that PIECE and C2C both produce plausible counterfactuals, and their corresponding
step variations also produce counterfactuals near the class boundary.

We compared the models quantitatively, reusing the following metrics the original evaluation
of PIECE [6]: IM1 and IM2 are two measures of the interpretability of counterfactuals [33];
The posterior mean (MC-Mean) and posterior standard deviation (MC-STD) of MC dropout
measures the model’s confidence and uncertainty on the counterfactuals [34]; Last, NN-Dist
measures the distance between a counterfactual and a nearest neighboring training sample.
These metrics quantitatively reflect how realistic the generated images are. Table 1 compares
the counterfactuals generated by different algorithms for the 41 hard samples under the five
metrics. Min-Edit is included as a baseline counterfactual generation algorithm. Note that
PIECE and C2C are comparable to each other because they modify a fixed number 𝑛 of features,
while the rest of the algorithms modify features one by one until crossing the class boundary.



Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

MC-Mean MC-STD NN-Dist IM1 IM2
PIECE 90591 248393 0.411 3.005 0.064
C2C 5937 12574 0.626 2.338 0.064
Min-Edit 600 1168 1.066 3.897 0.067
PIECE-step 395 668 1.029 2.227 0.072
C2C-step 409 811 1.014 2.607 0.073
which is

better?
higher lower lower lower lower

Table 1
Comparison of Counterfactual Generation Algorithms

Figure 7: Gradual Changes of a Car’s Image when Modifying Top 5 Locally Ranked Features in the
Inter-Elevation Pattern

Both the qualitative and quantitative comparisons show that PIECE and C2C (PIECE-step
and C2C-step correspondingly) generate counterfactuals with their own unique “tastes” but
achieve similar overall performance.

4.3. Limitations of Analogies Found by C2C-SN

The assumption that there exists an analogy between two classes 𝐶1 and 𝐶2 may not hold when
either class is widely dispersed. For 𝑥1, 𝑥2 of class 𝐶1 and 𝑦1, 𝑦2 of class 𝐶2, 𝑥1 (or 𝑦1) can be
very different from 𝑥2 (or 𝑦2) and the feature difference 𝑓(𝑥1)− 𝑓(𝑦1) can be not consistent
with 𝑓(𝑥2)− 𝑓(𝑦2). We demonstrate this issue in the following experiment combining C2C-SN
with a Guided-VAE [35] on the Cars3d data set [11].

Cars3d is a multi-label data set where each sample is an image associated with one of 184 car
models, one of 24 azimuths and one of 4 camera elevations. Feature entanglement is intrinsically
difficult in the Cars3d data set. For example, two images of different car models may pose with
different camera angles, obscuring the analogy between the models. We experimented with
Guided-VAE which reportedly encourages feature disentanglement through supervised learning
[35]. However, features are still entangled. Figure 7 shows changes in features extracted for
inter-elevation pattern often change the azimuth or car model as a side-effect.

The sub-optimal experimental result can be explained in a few ways: (1) C2C-SN encourages
features extracted to be relevant for a target analogy but does not prevent the entanglement
of other analogies. (2) C2C-SN relies on the feature extractor. If the feature extractor fail to



Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

disentangle features, C2C-SN suffers with it. (3) The analogical pattern between two complex
classes may involve multiple features instead of one.

As a future direction, an analogical suitability test can be devised to check whether a data set
with a feature extractor is suitable for analogy learning using C2C-SN.

5. Conclusion

This paper proposes a generally applicable method to extract analogies corresponding to general
similarity and difference patterns between elements of classification domains, and illustrates
the usefulness of such analogies in counterfactual explanation. An ML model with a feature
extractor and a C2C-SN can be trained together where the loss of the C2C-SN functions as a
regularizer for the original ML loss. The ML model is thus trained to extract features that are
useful for (1) the original purpose of the ML model (e.g. classification or image reconstruction)
and (2) describing analogies. This method can provide C2C-SN feature importance rankings and
suggest features to modify for counterfactual explanations. Experimental results of quantitative
evaluations show results comparable to an existing method while the proposed method is more
generally applicable. An interesting future question is to apply C2C-SN to discover analogies in
other domains such as natural language texts.

Acknowledgments

This paper is adapted from "Selecting Feature Changes for Counterfactual Explanation: A
Class-to-Class Approach,” which appeared in the non-archival proceedings of the IJCAI 2023
Workshop on Explainable AI (XAI).

References

[1] R. P. Hall, Computational approaches to analogical reasoning: A comparative analysis, Ar-
tificial Intelligence 39 (1989) 39–120. URL: https://www.sciencedirect.com/science/article/
pii/0004370289900039. doi:https://doi.org/10.1016/0004-3702(89)90003-9.

[2] D. Hofstadter, M. Mitchell, The copycat project: A model of mental fluidity and analogy-
making, in: K. Holyoak, J. Barnden (Eds.), Advances in Connectionist and Neural Compu-
tation Theory, volume 2, Ablex, 1993, pp. 31–11.

[3] S. E. Reed, Y. Zhang, Y. Zhang, H. Lee, Deep visual analogy-making, in: C. Cortes,
N. Lawrence, D. Lee, M. Sugiyama, R. Garnett (Eds.), Advances in Neural Information
Processing Systems, volume 28, Curran Associates, Inc., 2015. URL: https://proceedings.
neurips.cc/paper_files/paper/2015/file/e07413354875be01a996dc560274708e-Paper.pdf.

[4] N. Ichien, Q. Liu, S. Fu, K. J. Holyoak, A. L. Yuille, H. Lu, Visual analogy: Deep learning
versus compositional models, Proceedings of the 43rd Annual Meeting of the Cognitive
Science Society (2021). URL: https://par.nsf.gov/biblio/10231806.

[5] E. Hüllermeier, Towards analogy-based explanations in machine learning, in: V. Torra,
Y. Narukawa, J. Nin, N. Agell (Eds.), Modeling Decisions for Artificial Intelligence, Springer
International Publishing, Cham, 2020, pp. 205–217.

https://www.sciencedirect.com/science/article/pii/0004370289900039
https://www.sciencedirect.com/science/article/pii/0004370289900039
http://dx.doi.org/https://doi.org/10.1016/0004-3702(89)90003-9
https://proceedings.neurips.cc/paper_files/paper/2015/file/e07413354875be01a996dc560274708e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/e07413354875be01a996dc560274708e-Paper.pdf
https://par.nsf.gov/biblio/10231806


Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

[6] E. M. Kenny, M. T. Keane, On generating plausible counterfactual and semi-factual
explanations for deep learning, in: Proceedings of the AAAI Conference on Artificial
Intelligence, 2021, pp. 11575–11585.

[7] Y. Goyal, Z. Wu, J. Ernst, D. Batra, D. Parikh, S. Lee, Counterfactual visual explanations,
in: International Conference on Machine Learning, PMLR, 2019, pp. 2376–2384.

[8] D. P. Kingma, M. Welling, Auto-Encoding Variational Bayes, in: 2nd International
Conference on Learning Representations, ICLR 2014, 2014.

[9] Y. LeCun, C. Cortes, MNIST handwritten digit database (2010). URL: http://yann.lecun.
com/exdb/mnist/.

[10] H. Xiao, K. Rasul, R. Vollgraf, Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017. URL: http://arxiv.org/abs/1708.07747, arxiv:1708.07747.

[11] S. E. Reed, Y. Zhang, Y. Zhang, H. Lee, Deep visual analogy-making, in:
Advances in Neural Information Processing Systems, volume 28, Curran As-
sociates, Inc., 2015. URL: https://proceedings.neurips.cc/paper_files/paper/2015/file/
e07413354875be01a996dc560274708e-Paper.pdf.

[12] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah, Signature verification using a
“siamese" time delay neural network, in: Proceedings of the 6th International Conference
on Neural Information Processing Systems, NIPS’93, Morgan Kaufmann, San Francisco,
1993, pp. 737–744.

[13] X. Ye, D. Leake, W. Huibregtse, M. Dalkilic, Applying class-to-class siamese networks to
explain classifications with supportive and contrastive cases, in: Case-based reasoning
research and development, ICCBR-20, Springer, 2020, pp. 245–260.

[14] M. Bounhas, H. Prade, G. Richard, Some recent advances in reasoning based on analogical
proportions, 2022. arXiv:2212.11717.

[15] M. Bounhas, H. Prade, G. Richard, Analogy-based classifiers for nominal or numerical
data, International Journal of Approximate Reasoning 91 (2017) 36–55. URL: https://
www.sciencedirect.com/science/article/pii/S0888613X17305303. doi:https://doi.org/
10.1016/j.ijar.2017.08.010.

[16] M. Couceiro, N. Hug, H. Prade, G. Richard, Behavior of analogical inference w.r.t. boolean
functions, in: Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI-18, IJCAI, 2018, pp. 2057–2063.

[17] E. Marquer, F. Badra, M.-J. Lesot, M. Couceiro, D. Leake, Less is better: An energy-based
approach to case base competence, in: ATA’23: Workshop on Analogies: From Theory to
Applications, ICCBR 2023 Workshop Proceedings, CEUR, 2023, pp. 27–42.

[18] S. Lim, H. Prade, G. Richard, Using analogical proportions for explanations, in: F. Dupin de
Saint-Cyr, M. Öztürk-Escoffier, N. Potyka (Eds.), Scalable Uncertainty Management,
Springer International Publishing, Cham, 2022, pp. 309–325.

[19] H. Prade, G. Richard, Analogical proportions: Why they are useful in AI, in: International
Joint Conference on Artificial Intelligence, IJCAI, 2021, pp. 4568–4576.

[20] M. Mitchell, Analogy-Making as Perception, MIT Press/Bradford Books, Cambridge, MA,
1993.

[21] S. Hu, Y. Ma, X. Liu, Y. Wei, S. Bai, Stratified rule-aware network for abstract visual
reasoning, in: AAAI Conference on Artificial Intelligence, AAAI, 2020, pp. 1567–1574.

[22] E. Marquer, M. Couceiro, Solving morphological analogies: from retrieval to generation,

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1708.07747
https://proceedings.neurips.cc/paper_files/paper/2015/file/e07413354875be01a996dc560274708e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2015/file/e07413354875be01a996dc560274708e-Paper.pdf
http://arxiv.org/abs/2212.11717
https://www.sciencedirect.com/science/article/pii/S0888613X17305303
https://www.sciencedirect.com/science/article/pii/S0888613X17305303
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2017.08.010
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2017.08.010


Xiaomeng Ye et al. IARML@IJCAI’2024 Workshop Proceedings

ArXiv abs/2303.18062 (2023). URL: https://api.semanticscholar.org/CorpusID:257900745.
[23] C. Allen, T. M. Hospedales, Analogies explained: Towards understanding word embeddings,

in: International Conference on Machine Learning, PMLR, 2019, pp. 223–231.
[24] M. Mitchell, Abstraction and analogy-making in artificial intelligence, Annals of the New

York Academy of Sciences 1505 (2021). URL: https://api.semanticscholar.org/CorpusID:
231985717.

[25] S. Joshi, O. Koyejo, W. D. Vijitbenjaronk, B. Kim, J. Ghosh, Towards realistic individ-
ual recourse and actionable explanations in black-box decision making systems, ArXiv
abs/1907.09615 (2019). URL: https://api.semanticscholar.org/CorpusID:198179624.

[26] C. Theobald, F. Pennerath, B. Conan-Guez, M. Couceiro, A. Napoli, Clarity: an im-
proved gradient method for producing quality visual counterfactual explanations, 2022.
arXiv:2211.15370.

[27] M. T. Ribeiro, S. Singh, C. Guestrin, "why should i trust you?": Explaining the predictions
of any classifier, in: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’16, Association for Computing Machinery,
New York, NY, USA, 2016, p. 1135–1144. URL: https://doi.org/10.1145/2939672.2939778.
doi:10.1145/2939672.2939778.

[28] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in: Pro-
ceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, Curran Associates Inc., Red Hook, NY, USA, 2017, p. 4768–4777.

[29] S. Mishra, S. Dutta, J. Long, D. Magazzeni, A survey on the robustness of feature importance
and counterfactual explanations, 2023. arXiv:2111.00358.

[30] A. Fisher, C. Rudin, F. Dominici, All models are wrong, but many are useful: Learning a
variable’s importance by studying an entire class of prediction models simultaneously,
2019. arXiv:1801.01489.

[31] C. Molnar, Interpretable Machine Learning, 2 ed., 2022. https://christophm.github.io/
interpretable-ml-book.

[32] X. Ye, D. Leake, D. Crandall, Case adaptation with neural networks: Capabilities and limi-
tations, in: Case-Based Reasoning Research and Development ICCBR-22, Springer, Cham,
2022, pp. 143–158.

[33] A. Van Looveren, J. Klaise, Interpretable counterfactual explanations guided by prototypes,
in: Machine Learning and Knowledge Discovery in Databases. Research Track, Springer,
Cham, 2021, pp. 650–665.

[34] Y. Gal, Z. Ghahramani, Dropout as a bayesian approximation: Representing model un-
certainty in deep learning, in: Proceedings of the 33rd International Conference on
International Conference on Machine Learning - Volume 48, ICML’16, JMLR.org, 2016, p.
1050–1059.

[35] Z. Ding, Y. Xu, W. Xu, G. Parmar, Y. Yang, M. Welling, Z. Tu, Guided variational autoencoder
for disentanglement learning, in: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020, pp. 7920–7929.

https://api.semanticscholar.org/CorpusID:257900745
https://api.semanticscholar.org/CorpusID:231985717
https://api.semanticscholar.org/CorpusID:231985717
https://api.semanticscholar.org/CorpusID:198179624
http://arxiv.org/abs/2211.15370
https://doi.org/10.1145/2939672.2939778
http://dx.doi.org/10.1145/2939672.2939778
http://arxiv.org/abs/2111.00358
http://arxiv.org/abs/1801.01489
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book

	1 Introduction
	2 Background
	2.1 Analogy Between Classes and Class-to-Class (C2C) Methodology
	2.2 Machine Learning Models that Learn Analogies
	2.3 Counterfactual Explanation for Images

	3 Proposed Method
	3.1 Training Process
	3.2 C2C-SN Feature Importance

	4 Experimental Study
	4.1 Extracting and Ranking Features
	4.1.1 Experimental Results on MNIST
	4.1.2 Experimental Results on FashionMNIST

	4.2 Quality of Counterfactuals Using C2C-SN Feature Importance in PIECE
	4.3 Limitations of Analogies Found by C2C-SN

	5 Conclusion

