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Abstract
Analogy, the correspondence between two things, has been hailed as an important reasoning capability.
Proportional analogy, denoted 𝑎 : 𝑏 :: 𝑐 : 𝑑 and read “𝑎 is to 𝑏 as 𝑐 is to 𝑑”, is a special case of this where a
correspondence is made in the relation that holds between the two elements of two different pairs (𝑎, 𝑏)
and (𝑐, 𝑑). A common task in this domain is to solve for the conclusion 𝑑 given the premise (𝑎, 𝑏, 𝑐).
Few datasets of proportional sentence analogies exist which aren’t limited in the variety of relations
we hope to capture, including those of a semantic or common sense nature. In this work, we curate a
dataset of pairs of sentences for which such relations hold, constructing 78,400 analogies involving 32
relations. Our experiments demonstrate little basis for analogical reasoning of this kind using offsets
of vector embeddings, in agreement with previous work, for retrieval and generation. We leverage the
representations learned by pretrained language models, and the natural language input interface they
provide, to solve analogies by generating from a prompt, as well as finetuned in a sequence-to-sequence
setting. From this we gain insights into their failure modes and disparity in task ability.
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1. Introduction

We study the analogy-solving ability of language models and representations derived therefrom,
specifically as regards proportional sentence analogies (those said “A is to B as C is to D” and
denoted 𝑎 : 𝑏 :: 𝑐 : 𝑑) formed on the basis of syntax, semantics, and encyclopedic knowledge.
That is, we are interested in finding the conclusion 𝑑—given the premise (𝑎, 𝑏, 𝑐)—of paired
natural language sentences (𝑎, 𝑏) and (𝑐, 𝑑) which are analogous in ways that can be considered
common sense to many humans. For example, in the analogy I’m happy : I’m angry :: I sang : I
yelled, there is a relation of opposition of mood that holds which is relatively intuitive, though
ambiguous as the solution I yelled need not be unique. This is the kind of analogy we refer to
in our work.

The framework of proportional analogies is drawn from classical mathematical analogies
such as 5− 3 = 12− 10 or 2

1 = 4
2 in addition to conceptual ones, for example when Aristotle

writes “as old age is to life, so is evening to day” [1]. These analogies are a quaternary relation

IARML@IJCAI’2024: Workshop on the Interactions betweenAnalogical Reasoning andMachine Learning, at IJCAI’2024,
August, 2024, Jeju, South Korea
*Corresponding author.
 yves.blain-montesano@umontreal.ca (Y. Blain-Montesano); felipe@iro.umontreal.ca (P. Langlais)
{ https://www-labs.iro.umontreal.ca/~felipe/ (P. Langlais)
� 0000-0002-2602-2019 (P. Langlais)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

mailto:yves.blain-montesano@umontreal.ca
mailto:felipe@iro.umontreal.ca
https://www-labs.iro.umontreal.ca/~felipe/
https://orcid.org/0000-0002-2602-2019
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


Yves Blain-Montesano et al. IARML@IJCAI’24 Workshop Proceedings

where for some (𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝑋4 we denote it with 𝑎 : 𝑏 :: 𝑐 : 𝑑 if and only if some relation
𝑅 ⊆ 𝑋2 holds both for (𝑎, 𝑏) and (𝑐, 𝑑):1

𝑎 : 𝑏 :: 𝑐 : 𝑑 ⇐⇒ ∃𝑅 ⊆ 𝑋2 s.t. 𝑎𝑅𝑏 ∧ 𝑐𝑅𝑑

Previous work has postulated equivalence relations between some permutations of the terms
in 𝑎 : 𝑏 :: 𝑐 : 𝑑 which apply in formal languages and Boolean logic. Instead, we follow [2] in
distinguishing this “parallelogram model” of analogy from NLP-style analogies. Rather than
leveraging domain-specific properties to prove the equivalence of analogy permutations, the
latter kind only admits analogies whose relations 𝑅 are in a predetermined set 𝑆, such as
the Google analogy set [3] or BATS (Bigger Analogy Test Set) [4]. There is no guarantee of
symmetry, i.e. 𝑅 ∈ 𝑆 ⇐⇒ 𝑅−1 ∈ 𝑆 (hence 𝑏 : 𝑎 :: 𝑑 : 𝑐), nor of central permutation,
i.e. ∀𝑅𝑖 ∈ 𝑆 s.t. 𝑎 : 𝑏 :: 𝑐 : 𝑑, ∃𝑅𝑗 ∈ 𝑆 s.t. 𝑎 : 𝑐 :: 𝑏 : 𝑑,2 as these must be deliberately included
in 𝑆.

We narrow our interest onto distributional models of natural language, where interest in
proportional analogies has persisted since the popularizing work of Mikolov et al. [5] on word
embeddings, interest which has extended to sentence embeddings. In this tradition, the typical
method for solving proportional analogies, called the vector offset or vector arithmetic
method, is to take the embedding 𝐸(·) for each term of the analogy under a model of arithmetic
analogy: assuming the embeddings of (𝑎, 𝑏) and (𝑐, 𝑑) define a parallelogram and thus have
equal offset vectors 𝐸(𝑏)− 𝐸(𝑎) = 𝐸(𝑑)− 𝐸(𝑐), then 𝐸(𝑑) = 𝐸(𝑐) + 𝐸(𝑏)− 𝐸(𝑎). As the
predicted 𝑑 vector will rarely correspond exactly to an embedding, a solution will be found by
retrieval among a set of candidates 𝐶 from a vector space model (VSM) by maximum cosine
similarity, in which case the method is called 3CosAdd. In general, we will call a vector solver
any function 𝑓 which aims to predict 𝐸(𝑑) = 𝑓 (𝐸(𝑎), 𝐸(𝑏), 𝐸(𝑐)). Above, 𝐶 refers to the
set of candidates for retrieval. In word analogy, this is the vocabulary for which we have
embeddings. As this work regards sentence analogy, 𝐶 is a set of sentences, which we’ll take
as the unique sentences from a set of analogies. Vector arithmetic has been used to retrieve
[6] as well as decode [7] the solution to sentence analogies. Yet, analogical reasoning with a
vector offset has been shown to lack empirical and theoretical justification by its assumption of
binary opposition of relations, the commutative properties of addition used by the offset, and
its dependence on spurious properties of the embedding vectors used [8, 9].

While sentence embeddings from pooled token encodings produced by large language models
(LLMs) of the Transformer architecture are often used [6, 10, 11, 12, 13], less attention has been
given to conditionally generating the solution 𝑑 by directly providing the premises (𝑎, 𝑏, 𝑐)
as input to the language model. Language models have been shown to display impressive
performance including at unseen tasks in a few-shot setting, scaling with size [14]. Such an
approach may offer the improvements of (1) retaining all information rather than pooling
encodings, and (2) using the natural language interface which the model has conveniently
already learned in order to specify the problem context. As such we need not enforce a model
of proportional analogy such as vector arithmetic, nor require sufficient training examples to fit
one on the pooled embedding space of a language model which is already pretrained.
1We define it this way while noting that trivial analogies under e.g. 𝑅 = 𝑋2 are not typically of interest.
2In pillow : bed :: headrest : car, the relation is between head supports and their associated locations. It is less clear
what relation holds between a bed and a car.
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In light of this, our contributions are as follows. We evaluate various models on their ability
to solve proportional analogies of natural language sentences held in varied (e.g. syntactic,
semantic) relational proportions. For this purpose, we elaborate a dataset of relational sentence
analogies described in Section 2. Extracting sentence embeddings from several language models,
we evaluate vector solvers via retrieval (see Section 3) and compare this approach to generating
solutions. For generation, we compare decoding from a vector solver prediction to finetuning
a pretrained language model on our analogies as a sequence-to-sequence task, as well as
prompting pretrained LLMs ranging into the billion-parameter size, as described in Section 4.

2. Dataset

While several sentence analogy datasets have been elaborated in previous works, we do not
overall find them sufficiently adapted to evaluating analogical reasoning on natural language
held in intuitive relations.

Zhu and de Melo [6] use NLI entailment and negation pairs such as There is no skilled person
riding a bicycle on one wheel. : A skilled person is riding a bicycle on one wheel. and template
sentences pairs filled with word analogies from the Google analogy set [3] such as I’ve never
been to Amman. : I’ve never been to Jordan. However, it has been shown that the Google analogy
set’s imbalanced relations are dominated by easier geographical and morphological word pairs
such as possible:impossible or long:longer which can skew the evaluation of analogical reasoning
with embeddings, while worse performance was found against BATS [4], which is a broader,
more balanced selection of relational word analogies. We expect the minimal variation between
template sentences coupled with the lack of distractor sentences (see Section 3.2) in their
candidate set to preserve the Google set’s skew.

Some previous work [7, 11] has used a set of 5,607 semantico-formal analogies extracted
from the Tatoeba corpus [15]. This set does not use predefined relations, though contains
many surface changes (e.g. pluralization, present versus past tense), and other unclear semantic
analogies such as the example I do not need a wheelchair. : I do not need a girlfriend. :: I do not
have a cat. : I do not have a boyfriend.

Others collate analogies from existing resources [10, 13], for example the DSBATS set [12] of
paired definition sentences corresponding to encyclopedic relations from BATS [4], but these
remain relatively restricted in the breadth of relations considered.

For these reasons, we collect and indeed write our own relational sentence pairs to ensure an
(1) adequate diversity of relations and sentences, and (2) that they constitute relatively “valid”
analogies by their manual curation. Our sentence analogy test set (SATS)3 is a collection of 32
relation sets, listed in Table 1, each of 50 pairs of sentences (totalling 1,600 pairs from 3,024
unique sentences) from which 2450 non-identity quadruples (i.e. not 𝑎 : 𝑏 :: 𝑎 : 𝑏) can be made
by combining pairs of a same relation, for a total of 78,400 analogies. We coarsely categorize
each relation set as Encyclopedic, Lexical, Syntactic, or Semantic for later aggregation of results.

We manually construct syntactic pairs such as My parents turned on the TV. : My parents
turned the TV on (from the canonical-verb-particle-movement relation set), and also include
relations of declarative sentences and questions taken from the QA2D dataset [16], which are

3Available at https://github.com/rali-udem/sats-sentence-analogy.

https://github.com/rali-udem/sats-sentence-analogy
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Table 1
SATS relations by category and split

Training

Encyclopedic hypernym-animal

Test

Encyclopedic capital-country
Encyclopedic misc-hypernym Encyclopedic country-language
Encyclopedic person-occupation Encyclopedic invention-creator

Lexical present-past Encyclopedic member-band
Semantic informal-formal Lexical idiom-literal
Semantic sentence-opposite Lexical numeral-spelled
Semantic sentiment-good-bad Lexical numeric-approximation
Syntactic because-so Lexical past-future
Syntactic canonical-extraposition Semantic cause-effect
Syntactic qa2d-declarative-howmany Semantic description-state
Syntactic qa2d-declarative-when Semantic home-outdoors
Syntactic qa2d-declarative-who Semantic simple-implicative-entailment

Validation

Encyclopedic meronym-substance Syntactic active-passive
Lexical present-future Syntactic canonical-verb-particle-movement

Semantic phrasal-implicative-entailment Syntactic qa2d-declarative-howmuch
Syntactic qa2d-declarative-what Syntactic qa2d-declarative-where

formed by replacing a constituent by a wh- question word (e.g. She opened the car door : What
did she open?).4 Those in the Semantic category have a more ambiguous relation, such as the
home-outdoors relation (e.g. He gave himself a haircut in the bathroom. : He went for a haircut
at the barbershop.) or the informal-formal relation (e.g. We gotta get going. : We need to start
moving.). Encyclopedic relations are inspired by the encyclopedic and lexicographic relation
sets in BATS [4]. Here, where possible, sentences are chosen which match a corresponding word
pair,5 specifically for the hypernym-animal, misc-hypernym, person-occupation, meronym-
substance, capital-country, and country-language relations. The sentences themselves are
collected from the first sentences of Wikipedia articles corresponding to those words, e.g. from
the meronym-substance relation we have A lens is a transmissive optical device which ... : Glass
is a non-crystalline ... :: A mirror or looking glass is ... : Glass is ..., from which it can also be
noted that several such relations are non-unique.

We also note that many attempts to train models on proportional analogies, while they use
data splits, do so within relation types [6, 7, 12, 17], rather than between them, thus confounding
whether they generalize analogical reasoning as such to unseen relations. For this reason we
split our data as outlined in Table 1.

3. Retrieving solutions in a VSM

The first approach we examine is to retrieve the solutions to our analogies from a set of candidate
sentences by maximum cosine similarity. The two questions this experiment seeks to answer
are: (1) How do different models’ embeddings lend themselves to analogical reasoning? (2) Do
vector-based models of analogy (such as vector arithmetic) vary in their ability to recover useful
features for this purpose?

4This example pair is not contained in SATS.
5For example, for the BATS pairMozart : composer, we will take the first sentence from the corresponding Wikipedia
articles for “Mozart”, and for “Composer”
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3.1. Models

To the first point, the embeddings we use are those mean-pooled from the final encodings of
transformers,6 namely Flan-T57 [19], BERT [20], RoBERTa [21], DeBERTa V1 and V38 [22, 23],
SBERT9 [18], and summed embeddings from the English Common Crawl CBOW FastText
embeddings [24]. We use the Base checkpoint for all models where applicable.

To the second point, we examine three vector solvers: 3CosAdd, a feedforward network—as
has been attempted by others [6, 7]—and an Abelian neural network [17] which is a universal
approximator of Abelian Lie operations10 (such as addition, used in vector arithmetic). Unlike
3CosAdd, the feedforward (hereafter shortened to FF) and Abelian neural networks have
parameters which must be trained11 for each different embedding model. Both trained solvers
are feedforward neural networks composed of five blocks.

The FF blocks are composed of two affine transformations using the GELU activation function
with residual connections and layer normalization. All hidden states retain the input dimension-
ality, though the first block has the dimensionality of the concatenation of the premise sentence
embeddings 𝐸(𝑎) ∘ 𝐸(𝑏) ∘ 𝐸(𝑐), followed by an affine transformation which reduces it to the
original embedding dimension.

The Abelian neural network is an invertible neural network 𝜑 which transforms embeddings
into a space of the same dimensionality before applying the vector arithmetic method. The
predicted solution is then found by using the inverse 𝑥 = 𝜑−1 (𝜑(𝐸(𝑐)) + 𝜑(𝐸(𝑏))− 𝜑(𝐸(𝑎))).
For this we use the AllInOneBlock invertible block provided by the FrEIA Python module [25],
which takes an inner function which we compose from two affine layers with a GELU activation
function.

For each embedding model, the Abelian and FF solvers are trained on batches12 of 8 SATS
analogies, with additive Gaussian noise on the order of 10−2, using the Adafactor optimizer [26]
with a learning rate of 3× 10−5. As a loss, we use negative cosine similarity,13 i.e. loss(𝑥, 𝑦) =
− 𝑥⊺𝑦

‖𝑥‖·‖𝑦‖ . We observe overfitting over two epochs of training, thus the best checkpoint is selected
on the validation split using the harmonic mean of the top-1 and top-5 retrieval accuracy to
encourage choosing a model that at least predicts the neighborhood of the solution.

The Flan-T5 model being an encoder-decoder, for a sequence of token length 𝐿, it performs
cross-attention on all 𝐿 token encoding vectors in order to autoregressively generate an output
(which we explore further in Section 4). We can use this to gauge whether a model trained jointly
to solve analogies in vector space and decode the solution results in better retrieval accuracy
by adapting Flan-T5 to decode solely by cross-attention on a single bottleneck vector, which

6Mean-pooling has been found to outperform the [CLS] token’s encoding [18].
7Note that this is the only encoder-decoder model we use. All others have an encoder-only architecture.
8The latter differs by the use of a replaced token classification task rather than the usual masked language modeling
objective.

9Specifically the all-mpnet-base-v2 checkpoint.
10This is a differentiable operation, over some set, which has associativity and commutativity, as well as identity

and inverse elements.
11Architecture and hyperparameters were manually tweaked. While the FF solver remains essentially a feedforward

neural network, our tweaking prevents direct comparison with e.g. the feedforward solver of [7].
12Here and elsewhere, batches are obtained by a random shuffling of all analogies in a given split.
13We found regression with a mean square error loss to perform worse overall.
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Figure 1: A visualization of the end-to-end vector solver and decoder architecture. First each sentence
is encoded and its encodings mean-pooled. 𝑓 is the vector solver used, e.g. the offset method. In a
retrieval task, 𝑥 is used as the predicted solution vector for retrieval. When training (and for generative
evaluation in Section 4), the decoder performs cross-attention on 𝑥 to autoregressively generate 𝑑.

we take to be a vector solver prediction 𝑓(𝐸(𝑎), 𝐸(𝑏), 𝐸(𝑐)). All vector solvers mentioned
previously being differentiable, we can train such an end-to-end solver-decoder model (E2E-
Flan-T5, visualized in Figure 1) for each different 𝑓 , backpropagating gradients into the solvers’
as well as the pretrained model’s parameters. We use these finetuned models both for retrieval
in this experiment—since at test time we can simply extract the output of the embedded vector
solver—and for generation in Section 4 by decoding from the vector solver’s output.

In order to use Flan-T5 as a vector bottleneck sentence autoencoder, we must first “warm
up” the pretrained model by finetuning it for this purpose using the mean-pooled encoding
vector, rather than all 𝐿 encodings. Using a negative log-likelihood (NLL) loss, we train it on a
next-token prediction task on interleaved, padded (up to 500 tokens) batches of 72 sentences
split from the Reddit comments dataset provided by the Sentence-Transformers team14 and
from the Online Language Modelling [27] dataset of Wikipedia articles dated 20-12-2022.15 This
finetuning was performed in a single epoch (with no intentionally repeated data) for 281,600
batches,16 at which point it reached a validation loss of 0.372 (compared to the pretrained
Flan-T5’s 0.30) on some 1,024 held-out sentences. We use a learning rate of 3× 10−5 and the
same Adafactor optimizer [26] as the model was originally trained with.

This checkpoint is used as the initialization of the end-to-end model with each of the vector
solvers mentioned previously, trained to generate the solutions to analogies from the SATS
training split, using the same NLL objective and optimizer, a learning rate of 10−4, and a batch
size of 64. Observing overfitting over a single epoch, we select the best checkpoint on the
validation split by METEOR score [28].

3.2. Evaluation

One aspect of evaluation that shouldn’t be overlooked is the choice of candidate set, which often
excludes the premises (𝑎, 𝑏, 𝑐), thereby artificially improving accuracy [29], as the offset vector
often points away from 𝑑 and indeed every other candidate but 𝑐 [9]. While we use the 3,024

14https://huggingface.co/datasets/sentence-transformers/reddit-title-body
15https://huggingface.co/datasets/olm/olm-wikipedia-20221220
16At this point the model had not finished converging, due to the abundance of data.

https://huggingface.co/datasets/sentence-transformers/reddit-title-body
https://huggingface.co/datasets/olm/olm-wikipedia-20221220
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Table 2
Retrieval accuracy of the analogy solution using the 3CosAdd and FF solvers. Columns describe accu-
racy under different candidate sets. Neither: premises (𝑎, 𝑏, 𝑐) excluded, no distractors added; +distrac-
tors: distractors added; +(a,b,c): premises retained; Both: both distractors and premises included.

3CosAdd FF
Model Neither +distractors +(a,b,c) Both Neither +distractors +(a,b,c) Both

E2E-Flan-T5 0.60 0.25 0.15 0.14 0.00 0.00 0.00 0.00
Flan-T5 0.61 0.21 0.10 0.08 0.36 0.10 0.15 0.07
SBERT 0.82 0.10 0.07 0.03 0.50 0.04 0.15 0.02
RoBERTa 0.57 0.27 0.15 0.12 0.23 0.12 0.12 0.08
BERT 0.61 0.16 0.07 0.05 0.32 0.12 0.13 0.08
DeBERTa 0.59 0.20 0.08 0.07 0.22 0.03 0.15 0.03
DeBERTa-V3 0.34 0.20 0.08 0.06 0.01 0.00 0.01 0.00
FastText 0.57 0.00 0.21 0.00 0.01 0.00 0.01 0.00

unique sentences in SATS as our candidates, they are very few in number. Thus, we evaluate
accuracy under different candidate sets: with or without premises, and with or without added
distractor sentences which we automatically create as follows.

For each unique sentence in SATS, we construct distractors by sampling whitespace-tokenized
pairs of words to swap, or individual words to remove or replace with a randomly chosen nearest
neighbour from the FastText vocabulary.17 For example, from You’re in trouble, friend,
we might swap to get friend. You’re trouble, in, delete to get You’re ∅ trouble, friend., or replace
to get You’re inside trouble, friend. We sample from each sentence at most 5 times (length
permitting) per type of modification, producing 41,356 unique distractor sentences.

We test the retrieval accuracy of 3CosAdd and the trained FF and Abelian vector solvers
for each embedding model. To this we add the E2E-Flan-T5 model (for each embedded vector
solver). We find mostly similar retrieval accuracy for the Abelian and 3CosAdd methods.18

Hence, in Table 2, we present the retrieval accuracies for 3CosAdd and FF only.
FF, even with premises and distractors excluded, attains only roughly half the accuracy of the

Abelian solver and 3CosAdd. In the hardest condition it performs at a similar level, depending
on the model. We’ll note that it did not converge in training for E2E-Flan-T5, attaining zero
accuracy. It also obtains near-zero test accuracy for DeBERTa-V3 on all candidate sets. Insofar
as it succeeds with Flan-T5, BERT, and RoBERTa embeddings, the majority of its accuracy
comes from the declarative-question, canonical-verb-particle-movement, numeral-spelled, and
numeric-approximation relations.

This concentration of accuracy in only some relations is not a particularity of the FF solver or
of training. 3CosAdd and the Abelian solver obtain near or above 20% accuracy for Lexical and
Syntactic relations, depending on the embedding model, using the most difficult candidate set,
and near zero for Encyclopedic and Semantic ones. Relatedly, we find that for base sentence pairs
(𝑎, 𝑏) in SATS, the nearest neighbor to 𝑎 is 𝑏 over 80% of the time for most embedding models

17We select the top 20 nearest neighbours with fewer than 25 characters.
18We surmise that the Abelian solver’s invertible neural network has preserved much of the original embedding

space. Perhaps the algebraic properties of any Abelian operation will impede embedding-based solvers.
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Table 3
Example analogy from the member-band relation and top two retrieved solutions for SBERT and
3CosAdd. When the premises are removed, the correct solution is found. When they or their dis-
tractors are included, it is one of the premises which is retrieved. In the hardest case, it is in fact a
distractor for 𝑐 which ranks first.

Gene Simmons ... : Kiss ... :: Bradford Phillip Delson ... : Linkin Park ...

Neither +(a,b,c) +(a,b,c) +distractors

Linkin Park is an American rock
band ...

Bradford Phillip Delson (born De-
cember 1, 1977) is an American
musician, best known as ...

Bradford Phillip Delson 1, 1977) is
an musician, best known as ...

Def Leppard are an English ... Kiss (stylized as ...) is an ... Bradford Phillip Delson ...

for Lexical and Syntactic relations, 30-50% for Semantic ones, and roughly 0% for Encyclopedic
ones—except for SBERT, where it’s 46%. Nor is the decrease in accuracy simply an effect of
our distractors. It is still the case that when a distractor is picked, it is of the premises (𝑎, 𝑏, 𝑐)
rather than of 𝑑, as exemplified in Table 3. Such caveats are in line with results from the word
analogy literature, where keeping premises in the candidate set reduces accuracy immensely
[29], and where some surface relations are preferred [4].

We will note that when premises are included, FastText embeddings attain 40% and 46% for
the Lexical and Syntactic categories but near zero in other categories, and even this drops to
zero when distractors are added, as summed word embeddings cannot account for word order.
However, this summation does mean that vector offsets can correspond to differences in used
vocabulary.

It has been shown by [9] for lexical analogies that the cosine similarity to 𝑑 of the offset
prediction 𝑐 + 𝑏 − 𝑎 is dependent on the similarity of the offsets of the two pairs (𝑎, 𝑏) and
(𝑐, 𝑑) and the similarity of the terms within a single pair (𝑐, 𝑑), which can be high or low for
spurious reasons. Instead, they introduce the pairing consistency score (PCS), which measures
the linear distinguishibility of a relation for a particular embedding space. To compute PCS for
a given relation, we treat sets of offset vectors of true pairs and those of false shuffled pairs
as observations for a binary classification task where the predictive score of each set of offset

Table 4
PCS for test split relations by model and category. Higher is better, 0.5 is chance level.

Encyclopedic Lexical Semantic Syntactic

E2E-Flan-T5 (arithmetic) 0.52 0.85 0.64 0.94
Flan-T5 0.55 0.83 0.62 0.86
SBERT 0.82 0.80 0.61 0.74
RoBERTa 0.54 0.83 0.66 0.87
BERT 0.62 0.84 0.63 0.81
DeBERTa 0.58 0.83 0.67 0.89
DeBERTa-V3 0.51 0.68 0.58 0.65
FastText 0.57 0.86 0.62 0.87
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vectors is the average cosine similarity of all
(︀
𝑛
2

)︀
combinations of offsets. With this the area

under the receiver operating characteristic (AUROC) is computed.19 As with [9], we take PCS
as the average AUROC over 𝑁 = 50 different false pair shufflings per relation.

Table 4 shows how embedding models have high PCS, i.e. linear separability of true offsets,
for Lexical and Syntactic relations. PCS is much closer to chance for Semantic and, most notably,
Encyclopedic relations. There are two exceptions to this. SBERT has exceptionally high PCS
for Encyclopedic relations, likely due to its contrastive training on sources such as Wikipedia,
whereas it has been found that contrastive loss leads to parallel offsets [30]. The second exception
is DeBERTa-V3, which has exceptionally low PCS, and yet is a performant state of the art model.
This is likely due to DeBERTa-V3’s replaced token detection task, whereas all other embedding
models are trained on a language modeling objective. The latter objective has been shown to
result in linear representations [31]. We will suggest from these results that even when an
embedding space adequately represents a relation in terms of parallel offsets—and even this
should not be taken for granted among otherwise performant models like DeBERTa-V3—vector
arithmetic fails to successfully utilize this regularity, often leading to the retrieval of a premise.

4. Generating solutions

We explore several approaches to generating the solution to analogies. First, we directly decode
it with the E2E-Flan-T5 model.20 Second, we finetune the Flan-T5 Base and Large checkpoints
on our analogies as a sequence-to-sequence (Seq2Seq) task. Third, we directly prompt the
Flan-T5 model in its parameter sizes of Base (250M), Large (780M), XL (3B) and XXL (11B).
When sampling, we use 𝜂-sampling [32] with 𝜂 = 6× 10−4. We use BLEU [33], METEOR [28],
word error rate (WER), and exact match accuracy, which we report in Table 5.

The Seq2Seq Flan-T5 models (see Figure 2) are finetuned on SATS analogies to conditionally
generate 𝑑 from (𝑎, 𝑏, 𝑐). First, we input to the encoder portion of the transformer the concate-

Table 5
SATS test split generation metrics. Copy rates refer to the exact match of the generated prediction with
a premise sentence.

Exact Match ↑ WER ↓ METEOR ↑ BLEU ↑
(𝑎, 𝑏) Baseline — 0.86 0.54 0.23
E2E-Flan-T5 Base 0.03 0.92 0.38 0.14

Seq2Seq
Base 0.00 1.10 0.31 0.10
Large 0.01 0.92 0.42 0.16

Prompted

Base 0.00 1.84 0.27 0.05
Large 0.00 0.94 0.40 0.14
XL 0.01 0.98 0.37 0.13
XXL 0.02 0.94 0.41 0.16

19Thus, if a relation is linearly distinguishible in an embedding space, as we increase the threshold for positive
classification from 0 to 1, we expect the similarity of false offsets (false positives) to fall below it quickly, and that
of true offsets (true positives) to do so slowly.

20We use the vector arithmetic variant since we find it performs identically to the Abelian one.
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Figure 2: Depiction of the sequence-to-sequence analogy task. The bolded text refers to sentence 𝑐
which is prepended to the generated solution.

nated input sentences 𝑎⊕ 𝑏. The decoder portion of the transformer performs cross-attention
on the encodings of 𝑎 ⊕ 𝑏, and auto-regressively generates 𝑑, given the 𝑐 premise sentence
which is prepended to decoder output (and masked from the loss computation, as it is an input).
The rationale is that the decoder may extract the change in the pair (𝑎, 𝑏) and complete (𝑐, 𝑑)
in a similar fashion.21 We use a NLL loss for 3 epochs with batches of 64, using the Adafactor
optimizer with a constant learning rate of 3× 10−5 for the Base models and 10−5 for the Large
models. NLL loss on the validation set is used to pick the best checkpoint.

Seq2Seq improves for the Large model, though its output mostly consists of attempted copies
of premise sentences. While E2E-Flan-T5 obtains better evaluation metrics, we can note (see
Table 6) that it has also overfit to training examples from the person-occupation relation. Its
output is often similar to training data, if not nonsensical.

Given that the pretrained Flan-T5 model is trained on text-to-text instruction-prompted
tasks, we informally settled on a few-shot prompt incorporating three new example analogies
not found in SATS, which elicits the model to output an appropriate response separated by a
(FINAL ANSWER) substring without any finetuning. We automatically separate the solution
from the generated sequence using the final (if any) occurrence of this answer separator.

We find that as model size increases the exact match accuracy increases. Copy rates hover
around or below 5%, only shooting up to a 𝑐 copy rate of 14% and 24% for the Flan-T5-Large
Seq2Seq and Prompted outputs, respectively, returning to low levels for the XL and XXL sizes.
Importantly, Table 6 shows that the largest model checkpoint exhibits understanding of the task,
though it too ultimately copies the 𝑐 premise after repeating the answer separator substring.

As an informal experiment, we prompted ChatGPT-3.5, which is finetuned by reinforcement
learning with human feedback [34], and davinci-002, which is trained solely on the language
modeling objective, both of which we expect to have 175 billion parameters [35]. As shown in
Table 6, while davinci-002 falls into the familiar premise copying trap, ChatGPT-3.5 answers
ideally, indicating that a language modeling objective alone may not suffice for immense models.

5. Conclusion

This paper presented a SATS, a novel sentence-level proportional analogy dataset which we
use to evaluate common methods of analogical reasoning using vector embeddings which
originate in work on word analogies. We identify similar gaps in the ability of such methods
to solve sentence analogies as have previously been found for lexical analogies. To what
21Providing (𝑎, 𝑏, 𝑐) as one to the encoder could potentially improve upon this, though we opted not to.
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Table 6
Comparison of example analogies and different models’ predictions. E2E-Flan-T5 reproduces an un-
related sentence from the person-occupation relation in the training set. Flan-T5-XXL first correctly
identifies the relation in question, though later repeats the answer separator and copies the 𝑐 premise
sentence, thus failing. The davinci-002 model also copies the 𝑐 premise sentence. ChatGPT-3.5, however,
correctly identifies the relation and solves the analogy, though the solution was manually extracted as
it disregarded the answer separator.

E2E-Flan-T5 (capital-country)
Taipei ... : Taiwan ... :: Berlin ... : Germany ...

*An author is someone who writes music ...

Flan-T5-XXL (capital-country)
Lisbon ... : Portugal ... :: Manila ... : The Philippines ...
(FINAL ANSWER) The change between sentences one and two is the country that Lisbon

is the capital and largest city of. ... (FINAL ANSWER) The city of Manila

OpenAI (person-occupation)
John Christopher
Depp ...

: An actor or actress is
...

:: Christopher Colum-
bus ...

: An explorer is a ...

davinci-002
(FINAL ANSWER) An actor or actress is a person who ...

ChatGPT-3.5
An explorer or navigator is a person who completes voyages across the Atlantic ...

extent analogical reasoning can be achieved with sentence embeddings is uncertain. While we
evaluate a variety of approaches, further exploration is necessary. The use of 3CosAdd could be
compared to 3CosMul [36] or retrieval by pairwise similarity [37]. Trained vector solvers may
see improvements from exhaustive hyperparameter search. Comparisons to existing neural
solver architectures [7, 11] should be made.

We experiment with solving sentence analogies generatively using the Flan-T5 language
model by finetuning on them as a sequence-to-sequence task, and by few-shot prompting,
finding improvements as models grow into the many billion parameter range. However, better
generative metrics should be found for predictions and targets which have high surface similarity.
Prompt engineering should also improve the performance of the pretrained Flan-T5 checkpoints
by inducing less premise copying, better chain-of-thought reasoning, and fewer incidences of
answer separator repetition

Our dataset is an important limitation. The reoccurrence of sentences in training analogies
may lead to overfitting, and we find it likely that their small quantity is the main contributor
to the poor performance of trained solvers. Finally, SATS should be improved by a principled
method for collecting and validating a variety of humanlike proportional analogies.
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